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ABSTRACT

The accuracy of short-range probabilistic forecasts of quantitative precipitation (PQPF) from the experimental
Eta—Regional Spectral Model ensemble is compared with the accuracy of forecasts from the Nested Grid Model’s
model output statistics (MOS) over a set of 13 case days from September 1995 through January 1996. Ensembles
adjusted to compensate for deficiencies noted in prior forecasts were found to be more skillful than MOS for
all precipitation categories except the basic probability of measurable precipitation. Gamma distributions fit to
the corrected ensemble probability distributions provided an additional small improvement.

Interestingly, despite the favorable comparison with MOS forecasts, this ensemble configuration showed no
ability to “‘forecast the forecast skill”” of precipitation—that is, the ensemble was not able to forecast the variable
specificity of the ensemble probability distribution from day-to-day and |ocation-to-location. Probability forecasts
from gamma distributions developed as a function of the ensemble mean alone were as skillful at PQPF as
forecasts from distributions whose specificity varied with the spread of the ensemble. Since forecasters desire
information on forecast uncertainty from the ensemble, these results suggest that future ensemble configurations
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should be checked carefully for their presumed ability to forecast uncertainty.

1. Introduction

Researchers are now exploring short-range ensemble
forecasting (SREF) as a possible alternative way of us-
ing available computational power for producing nu-
merical weather forecasts. As computational power in-
creases, higher and higher resolution forecasts of the
weather become possible. SREF represents an alterna-
tive approach, allocating the available computer time to
multiple, reduced-resolution integrations.

Although the ensemble methodology is used opera-
tionally for medium-range forecasts (Tracton and Kal-
nay 1993; Toth and Kalnay 1993; Molteni et al. 1996),
the practice to date for short-range forecasts was to al-
locate the available computer resourcesto asingle, high-
resolution forecast. It was presumed the atmosphere be-
haved pseudodeterministically for short-rangeforecasts;
hence, the effects of sensitive dependence oninitial con-
dition, or “‘chaos” (Lorenz 1963) and the concomitant
loss of forecast skill should dominate only after several
days. Though the benefits of higher-resolution forecasts
are many, surface features and precipitation display sig-
nificant spatial variability at short wavelengths and be-
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have chaotically even within the first few hours or days
of the forecast (Lorenz 1969; Brooks et al. 1992).
Hence, alternatives to single-integration forecasts are
being considered. A primary candidateisensemblefore-
casting (Leith 1974), whereby a varied set of initial
conditions are generated, all consistent with the obser-
vations and their errors. Separate deterministic forecasts
are integrated from each initial condition. Potentially,
an ensemble can have the appealing characteristics of
better defining the most likely weather outcome and
more accurately assessing probabilities of rare, dam-
aging events. The drawback is the computational ne-
cessity of using reduced resolution for the multiple en-
semble member forecasts.

Ensembl e forecast methodol ogies are now being con-
sidered for use operationally with shorter-range fore-
casts (0—2 days). Thisis a new approach, and there are
yet many questions. As a first attempt to answer some
of these questions, the National Centers for Environ-
mental Prediction has provided atest set of short-range
ensembl e forecasts generated with the Eta Model (Black
1994; Rogers et al. 1996) and the Regional Spectral
Model (RSM; Juang and Kanamitsu 1994). In this da-
taset, 10 ensemble forecast members were generated
using the Eta Model and a mix of perturbation meth-
odologies. Five initial conditions are interpolated from
various in-house objective analyses, and five others, a
control and four bred initial conditions, are interpolated
from the Medium Range Forecast (MRF) ensemble
(Toth and Kalnay 1993). Similarly, five ensemble fore-
cast members are generated with the RSM, also using
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TABLE 1. Root-mean-square magnitudes of perturbations for each
individual ensemble member domain averaged and averaged over
each case. Perturbation is calculated with reference to the ensemble
mean excluding that member.

500-mb 850-mb
Model/source of I1C heights (m) temperatures (K)
Eta/Bred P1 11.0 0.72
Eta/Bred P2 10.9 0.69
Eta/Opnl 8.3 0.85
Eta/AVN 31 0.41
Eta/Control 7.2 1.01
Eta/EDAS 9.9 1.43
Eta/3DVAR 8.4 0.66
Eta/NGM 11.6 1.26
Eta/Bred N1 11.0 0.74
Eta/Bred N2 10.9 0.68
RSM/Control 34 0.70
RSM/N1 11.0 0.94
RSM/N2 10.9 0.89
RSM/P1 111 0.91
RSM/P2 11.0 0.89

the same MRF control and bred initial conditions. Table
1 provides information on typical perturbation magni-
tudes for each ensemble member. These magnitudes
were determined from an average over 13 case days
from September 1995 through January 1996. The mag-
nitudes are measured as a domain average root-mean-
square difference of the member forecast relative to the
average of all other ensemble members, excluding the
member of interest. As shown, the perturbations vary
substantially in magnitude. Despite this, the root-mean-
square error of the resulting precipitation forecasts for
each individual ensemble member were quite similar
(Hamill and Colucci 1997, hereafter HC97), indicating
that the member forecasts for precipitation could be con-
sidered interchangeable. The ensemble forecasts were
also found to be underdispersive, with the member fore-
casts typically resembling each other more closely than
the forecasts resembled the verification data. Despite
this, HC97 determined that the precipitation forecasts
could be postprocessed rather simply to correct for their
undervariability, yielding an adjusted ensemble with
more desirable statistical characteristics.

Future research may correct or ameliorate the defi-
ciencies noted in this ensemble. In the interim, we dem-
onstrate the existing ensemble configuration may still
prove beneficial to the practicing weather forecaster.
This paper first reviews the method of HC97 for gen-
erating reliable statistical forecasts from an imperfect
ensembl e (section 2). Other candidate methods for post-
processing the ensemble precipitation forecasts are also
described. Next, we quantify the accuracy of PQPFs
generated from this prototype Eta—RSM ensembl e (sec-
tion 3). The performance of the ensemble will be ex-
amined before and after a correction based on previous
model forecasts, as well as before and after the fitting
of several plausible gamma distributions. The PQPFs
are also compared to the most viable current alternative,
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forecasts from model output statistics, or MOS (Carter
et a. 1989; Dallavale et al. 1992). Additionally, this
paper will address whether the ensemble really can
““forecast precipitation forecast skill”’—that is, forecast
the uncertainty of precipitation forecasts (section 4).
Section 5 provides conclusions.

In this study, 13 case days were used: 5 September
1995, 18 September 1995, 25 September 1995, 2 Oc-
tober 1995, 23 October 1995, 8 November 1995, 13
November 1995, 20 November 1995, 27 November
1995, 18 December 1995, and 26 December 1995, 23
January 1996, and 31 January 1996, all with forecasts
started from 1200 UTC. Verification was limited to
MOS sitesin the conterminous United States with avail-
able forecasts and precipitation data. Over the 13 case
days, there are approximately 4000 points with valid
forecasts and verifications, or approximately 300 sites
on each day. Twelve-hourly precipitation totals valid at
the various MOS sites were used as verification.

Since MOS forecasts are prepared using English units
of inches for precipitation, this convention will be used
throughout this paper. Conversions to millimeters will
be supplied where essentia (1.0 in. = 25.4 mm).

2. Methodologies for generating probabilistic
forecasts

Computer-generated forecasts are never perfect; they
inevitably contain a mix of errors due to insufficient
model physics, inadequate resolution, and incorrect ini-
tial conditions. For the evaluation of an ensemble, a
reference is needed. Here the standard of comparison
will be a hypothetical ““ perfect model” ensemble where
al errorsare attributableto errorsin theinitial condition.
Further, in this perfect-model ensemble, members fore-
casts are assumed to have independent and identically
distributed (iid) errors, and the verification is considered
a plausible member of the ensemble, differing from the
actual forecasts only by choice of initial condition. Un-
der these assumptions, the value of the verification ob-
servation when pooled with N ensemble forecasts and
sorted from lowest to highest is equally likely to occur
in each of the N + 1 possible ranks. Counting the rank
of the verification over many independent samples, an
approximately uniform distribution is expected across
the possible ranks. If the rank distribution was nonun-
iform, thisindicates that the assumptions were not being
met; the model was not perfect, or the selection of initial
conditions was inappropriate, or both.

Rules must be specified for assigning the rank. Mat-
ters are simple when the verification is different from
all ensemble members. For example, a verification pre-
cipitation forecast of 0.08 in. when pooled with five
ensemble forecasts of 0.0, 0.01. 0.03, 0.07, and 0.09 in.
is assigned rank 5 of 6. For situations where the veri-
fication exactly equals some of the forecast members,
such as precipitation forecasts of zero and a verification
of zero, asupplemental rulefor rank assignment is need-
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ed. For these cases, the number (M) of members tied
with the verification are counted. A total M + 1 uniform
random deviates (Press et al. 1992) are generated for
the M members and one verification, and the rank of
the verification’s deviate in the pool of M + 1 deviates
is determined. All ensemble members with alower rank
have an insignificantly small number (0.0001 in.) sub-
tracted from their values; similarly, all ensemble mem-
bers with higher rank have the tiny number added. This
randomly assigned the rank among the ties without sub-
stantially affecting later calculations.

HC97 provides extensive detail on the characteristics
of rank distributions from the Eta—RSM ensemble, and
Anderson (1996) reviews their usefulness in low-order
and climate model ensembles. In general, the Eta—RSM
distributions were found to be highly nonuniform, with
a greater percentage at the extreme ranks than at the
intermediate ranks. Thisindicatesinsufficient variability
within the ensemble and that the perfect-model as-
sumptions were not met. No results are yet available to
indicate whether the insufficient variability was due to
model errors, the selection of initial conditions, or both.

Given a rank distribution preferentially populated at
the extreme ranks, it is inappropriate to use the relative
frequency from the unmodified ensemble to make prob-
abilistic forecasts. For example, just because one-fifth of
the ensemble members are above a precipitation thresh-
old, the probability of the event being above the threshold
is not necessarily one-fifth. However, if the shape of the
rank distribution generated from past model forecastsis
representative of the distribution that can be expected for
new forecast sample points, then it can be used in con-
junction with the member forecasts to assess probabili-
ties. For example, Fig. 1 shows a hypothetical rank dis-
tribution for precipitation forecasts. Here the rank dis-
tribution indicates that the verification is higher than the
highest ensemble forecast on average 10% of the time.
Hence, subsequent ensemble forecasts can be sorted, and
the highest ensemble member can be used to define the
event threshold at which the verification is expected to
be greater 10% of the time. Similarly, the verification is
likely to be higher than the second highest ensemble
member 17% of the time, the sum of the top two ranks.
Continuing in this manner, points in the probability dis-
tribution can be estimated. Unfortunately, in such a case
there is no specific information on the distribution of
probabilities above the 90th percentile, and the proba-
bility of extreme events such as heavy rainfal are of
great interest. Hence, an alternative method will be nec-
essary to assign probabilities in the tails.

A method for calibrating an ensemble forecast using
rank histogram information is now described. Thisover-
all methodology will hereafter bereferred to asthe * cor-
rected ensemble’” forecast, and is also discussed in
HC97. Suppose there is a sorted ensemble precipitation
forecast X with N members, a verifying observation V,
and a corresponding representative verification rank his-
togram distribution R with N + 1 ranks representing

HAMILL AND COLUCCI

713

Hypothetical Representative
Rank Histogram for Precipitation

Q40 JT T T T T T T T T T T T T T T 1

0.30

illllllllllllllll

Percent/100.

JLAL L L L I

0.00

12 3 45 6 7 8 91011121314 1516
Rank

Fic. 1. Hypothetical rank distribution for precipitation forecast
with 15 members.

the past probability of the verification location compared
to the ensemble. Then probabilities of forecast events
can be assigned using (1):

p(V < X) = 121 R 1)
or equivalently, above the first rank
p(Xi; =V <X)=R. (2

The following additional assumptions were also made.
First, the rank histogram probability is uniformly dis-
tributed between the lowest ensemble member and zero.
For athreshold T less than the lowest ensemble forecast
X,
T
pO=V<T) = (Y>Rl, 0<T<X. (3
1
For example, if the lowest ensemble member forecast
were 0.03 in., the threshold 0.01 in., and the probability
of the verification occurring below the lowest ensemble
member 15%, the probability of 0.0-0.01 in. is set to
5%. Similarly, it is assumed that a given rank’s proba-
bility is equally distributed between ensemble members:

T-X\q
Xi+1 - X1 o
Xi<T=X. @

p(XisV<T)=<

and

X — T
T=V<X.,)=[2—|R.,,
p( |+1) <Xi+l _ X,) i+1

X <T=Xu. (5
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High Ens. Var. Unsmoothed
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Fic. 2. Cross-validated rank histograms for 23 January 1996 as a function of 24-36-h precipitation forecast ensemble
variability at MOS sites, before and after application of smoother. (a) Low ensemble variability (EV) histogram before
smoothing. (b) Moderate EV before smoothing. (c) High EV before smoothing. (d) Low EV after smoothing. () Moderate

EV after smoothing. (f) High EV after smoothing.

However, assumption of uniformity of probability be-
yond the highest ensemble forecast X, is certainly in-
appropriate. For example, given the highest ensemble
forecast is 0.75 in., the probability of 1-2-in. precipi-
tation should typically be greater than the probability
of 2-3 in. Hence we assume that the probability beyond
the highest ensemble member has the shape of a Gumbel
distribution (Wilks 1995) fit to the ensemble data by the
method of moments. The Gumbel distribution is the
distribution of choice for assigning probabilities to ex-
treme events. Given the cumulative distribution function
F of the fitted Gumbel distribution, the forecast prob-
ability that the verification will occur above X, and
below the next threshold is

F(M) — F(Xy)
—_— . 6
10 — F(Xy) ©)
Similarly, the probability that the verification will be

between any two thresholds T, > T, > X, is defined
as

PXy=V<T)=

F(Tz) — F(Tl)
1.0 — F(Xy)
For a practical example of how to use (1)—(6), see the

appendix.
Using these equations, at each MOS site, the ensem-

PM=V<T)= Rus1- (7)

ble dataand rank histograms were used to generate prob-
abilitiesfor each MOS precipitation category. The MOS
categorieshereare 0 =V < 0.01in., 0.01 = V < 0.10,
010=V<025025=V<0505=V<10,10
=V <20, and 2.0 =V (0.01, 0.10, 0.25, 0.50, 1.00,
and 2.00 in. equals 0.2, 2.5, 6.4, 12.7, 25.4, and 50.8
mm, respectively). The rank histograms were generated
using 12-h observed precipitation totals at the MOS sites
as verification and the technique of cross-validation,
whereby all sample points from all case days except the
forecast day of interest are used to generate rank his-
tograms (note that this a much shorter training dataset
than isused with MOS). The shape of the rank histogram
changed significantly with ensemble variability, or
‘“spread,” defined as the standard deviation of the en-
semble about its mean. Hence, a different rank histo-
gram was used for low, moderate, and high ensemble
variability forecasts. A low ensemble variability (EV)
was defined as EV < 0.03 in.; moderate, 0.03 = EV
< 0.12 in., and high, 0.12 = EV. Further, the rank
histograms were smoothed with a running line smoother
(Hastie and Tibshirani 1990) to smooth out the varia-
tions in the rank histograms due to small sample size.
Sample unsmoothed and smoothed rank histograms at
low, moderate, and high ensemble variability are shown
in Fig 2. Further stratification by geographical areaand/
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FiG. 3. Scatterplots of fitted gamma parameters « and 3 as a function of the ensemble mean for 5
September 1995: (a) a vs mean and (b) B vs mean.

or climate regime may prove beneficial in future studies
when larger training datasets are available.

To compare the corrected ensembles with an uncor-
rected ensemble, the same equations (1)—(6) were used,
but a uniform rank distribution was used—that is, R, =
R, == Ry = YN + 1). Thiswill be referred to
as the **uncorrected”’ forecast. This method yields sim-
ilar results to setting probabilities by relative frequency.

Two gamma distributions were also generated from
each ensemble forecast point, and the probabilitieswere
evaluated for the MOS categories. Gamma distributions
were chosen for their ability to take on a variety of
shapes based on the distribution of the input data; they
are used frequently to fit distributions to precipitation
climatologies (e.g., Wilks 1995). For the first of the two
fitted gamma distributions, the shape of the distribution
was designed to vary with the spread of the ensemble,
as do the corrected ensembl e forecasts; when the spread
of this ensemble is small, the probability distribution is
rather sharp, and vice versa. Hence, this first gamma
distribution was selected, which best fit the corrected
ensemble forecast. However, it was difficult to accu-
rately fit gamma distributions to the corrected forecasts
partitioned to the coarsely binned MOS precipitation
categories, so atemporary alternative corrected forecast
was generated using a larger number of categories (O
=V <001in,0.01=V<0.03,003=YV < 0.06,
0.06 =V < 0.10,0.10 =V < 0.20, 0.20 = V < 0.35,
0.35 =V < 0.50,050 =V <075 075 =V < 1.0,
10=V<1515=V<20,20=V<3030=
V < 4.0, and V > 4.0 in.). The same rank histograms
and methodol ogy that were used to generate the original
corrected ensemble were used here. Next, a set of gam-
ma distributions was generated by varying the param-
eters a and B through a range of values spanning the
range of distributions realistic to precipitation forecasts.

For each distribution the probabilities were computed
for each of the previously listed categories. The partic-
ular («, B) combination that most closely fit the alter-
native corrected forecast was selected. Probabilities
were then computed for the MOS categories. This meth-
od of distribution fitting was developed because more
common methods of distribution fitting proved inade-
quate for forecasts including many zero precipitation
events (Wilks 1990, 1995).

A second set of gamma distributions was also de-
veloped. These gamma distributions were a function of
only the ensemble mean. If forecasts from gamma dis-
tributions that vary with the ensemble spread are more
skillful than these more generic gamma distributions,
this then indicates some ability of the ensembleto fore-
cast the forecast skill. First, for each MOS location on
each case day, the value of the ensemble mean and the
previously fitted («, B) combination described above
were archived. Next, through cross-validation, a scat-
terplot of the fitted « and B versus the ensemble mean
were generated using datafrom all other case days. Rep-
resentative plots are shown in Figs. 3a and 3b. As
shown, statistical relationships are obscured by the
strong nonnormality of the data. Hence, power trans-
formations (Wilks 1995) were applied to «, B, and the
ensemble mean. Figure 4aand 4b plot transformed In(«)
and In(B) against a transformed ensemble mean, with
the transformed ensemble mean X' defined by

< (X + 0.01)°2 — 1.0
-0.3 '

©)

As shown, the resulting distribution is much more nor-
mally distributed and easier to interpret. Next, arunning
line smoother (Hastie and Tibshirani 1990) was applied
to determine the optimal transformed In(«) and In(B) as
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FiG. 4. Scatterplots of fitted (and power transformed) gamma parameters « and S as a function of the
power-transformed ensemble mean: (a) « vs mean and (b) 8 vs mean. Fitted regression line is overplotted

on each.

a function of X'. The running line smoother used a
neighborhood of 2.5 and a Gaussian kernel with a stan-
dard deviation of 0.7. The optimally fitted values were
overplotted in Figs. 4aand 4b. Next, inverse transforms
were applied to the regression relationship to predict o
and B simply as a function of X. Some resulting prob-
ability density functions are illustrated in Figs. 5a—d.
Generally, the parameter estimates nicely meet the con-
straint that the expected value E(X) = af at low pre-
cipitation thresholds, but not as well at higher thresh-
olds. Other methods, such as including variational con-
straints on the product o8 while selecting the parameters
were not tried.

3. Comparison against MOS forecasts

Despite the theoretical appeal of forecasting precip-
itation amount probabilistically, it is rarely done. Au-
tomated probabilistic precipitation forecasts are gener-
ated by the NGM MOS system (Carter et al. 1989; Dal-
lavalle et al. 1992). Unlike perfect prog approaches
(Wilks 1995), MOS can compensate for systematic er-
rors in the forecast model. The notable disadvantages
of the MOS technique are that many training case days
are necessary to sample adequately the range of poten-
tial weather regimes, and the model physics or resolu-
tion should not be changed once the predictive equations
have been developed. This retards the rapid develop-
ment and implementation of model improvements. The
Eta Model has since replaced the NGM as the primary
development model at NCEPR, but because of frequent
improvements to the Eta Model, no MOS forecasts have
been developed for it. Hence, the NGM MOS still pro-
vides the most sophisticated automated statistical guid-

ance for precipitation routinely available in the United
States.

MOS forecasts are disseminated to the field in the
National Weather Service’'s FOUS14 bulletin. This bul-
letin gives unconditional probabilities of measurable
precipitation in 12-h increments as well as a ‘‘best”
precipitation category, but the full information of prob-
abilities for each precipitation is not transmitted regu-
larly as part of this bulletin. However, such probabilities
are generated in house by the MOS developers at the
Techniques Development Lab (TDL) and were obtained
for comparison against the ensemble. For this compar-
ison, quantitative precipitation probabilities were ob-
tained for the MOS 12-24-, 24-36-, and 36—48-h fore-
casts for the mutually exclusive and collectively ex-
haustive categories0 = V < 0.01in., 0.01 = V < 0.10,
010=V<025025=V<0505=V<10,10
=V <20 and 20 = V.

The overall accuracy of the probability distribution
generated from each forecast is evaluated by the ranked
probability skill score (Wilks 1995), or ““RPSS.” This
is based on the ranked probability score (Epstein 1969;
Murphy 1971; Daan 1985), which compares the cu-
mulative distribution vector derived from the verifica-
tion to the cumulative distribution vector derived from
the forecast. Here, the RPSS measures the fractional
improvement in ranked probability score over MOS.
Higher scores are better, with 1.0 indicating a perfect
forecast and 0.0 indicating the skill of the MOSforecast.
Forecasts are also evaluated here using the Brier skill
score, or ““‘BSS’ (Brier 1950; Wilks 1995) for various
precipitation thresholds. Again, scores are computed
against the reference MOS forecast, and higher scores
are better.
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FiG. 5. Representative probability density functions fitted to various ensemble means. (a)
Distribution for 0.01-in. ensemble mean, (b) 0.10 in., (c) 0.50 in., and (d) 1.0 in.

Tables 2-4 summarize the RPSSs. Table 2 shows
RPSSsfor all forecasts combined; Table 3 shows RPSSs
for the subset of sample points where the verification
was greater than 0.25 in. Finally, Table 4 shows RPSSs
for the subset of points where the ensemble mean was
greater than 0.25 in. As shown, for the sample as a
whole, the MOS is the best performer at 24—36 and 36—
48 h, but the fitted gamma distribution was the best
performer at 24 h. However, as indicated in Tables 3
and 4, ensembl e-based methods consistently outperform
MOS in the subsets with higher precipitation events.
However, the scores are more variable between these
subsets and are based on a smaller sample, and should
thus be regarded as less trustworthy. Nonethel ess, these
results are quite encouraging, especially the competitive
performance of the ensembles for higher precipitation
amounts and considering the small training dataset used
to establish the rank histograms.

Similar performance was seen in the BSS, as shown
in Table 5. For the lowest precipitation thresholds, MOS
generally outperforms the ensemble forecasts, and vice
versa for all higher precipitation thresholds. Interest-
ingly, the gamma distribution fit to the ensemble mean
was frequently competitive with the other ensemble-

based forecasts, an indication that the presumed ability
of the ensemble to forecast the precipitation forecast
skill should be questioned.

Another important characteristic of probabilistic fore-
casts is their reliability, or calibration, which measures
the relationship between the forecast probability and the
relative frequency of event occurrence at a given prob-
ability. Reliability diagrams for p > 0.10 in. at 12-24
h are shown in Fig. 6; the decomposition of the Brier
score into reliability, resolution, and uncertainty (Mur-
phy 1973) are also indicated in thisfigure. The forecasts
appear reasonably well calibrated, except for the un-
corrected ensemble forecasts, which show a tendency
to overforecast the likelihood of precipitation over 0.10
in. Similar conclusions were drawn from the interpre-
tation of reliability diagrams for other thresholds and
forecast intervals (not shown).

4. Forecasting the forecast skill

Ensemble forecasts are expected to provide infor-
mation on the variable uncertainty of the precipitation
forecast, that is, the extent to which forecast probabil-
ities are to be dispersed across the MOS categories.
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TABLE 2. Ranked probability skill scores for MOS and four ensemble forecast methodologies averaged over all sample points. The
asterisk indicates highest RPSS value.

Time of Sample Uncorrected Corrected Gamma on Gamma on
forecast size MOS ensemble ensemble corrected ens. mean
12-24 h 3901 0.0 —0.140 —0.001 0.004* —0.023
24-36 h 4014 0.0* —0.194 —0.033 —0.027 —0.024
36-48 h 3868 0.0* —0.198 —0.033 —0.032 —0.018

TABLE 3. Asin Table 1 but for the subset of points where the ensemble mean forecast was greater than 0.25 in.

Time of Sample Uncorrected Corrected Gamma on Gamma on
forecast size MOS ensemble ensemble corrected ens. mean
12-24 h 296 0.0 —0.069 0.092 0.099* 0.081
24-36 h 334 0.0 —0.016 0.158 0.167 0.176*
36-48 h 307 0.0 —0.156 0.030 0.027 0.048*
TABLE 4. As in Table 1 but for the subset of points where the verification was greater than 0.25 in.

Time of Sample Uncorrected Corrected Gamma on Gamma on
forecast size MOS ensemble ensemble corrected ens. mean
12-24 h 233 0.0 0.282* 0.152 0.157 0.210
24-36 h 272 0.0 0.341* 0.162 0.173 0.246
36-48 h 203 0.0 0.293* 0.016 0.028 0.109

However, as shown previously, forecasts generated from
gamma distributions, which are only a function of the
ensemble mean, were generally competitive with other
ensemble forecast methods, especially at higher precip-
itation thresholds. We now attempt to determine more
specifically whether this particular ensemble has the
ability to forecast the forecast skill.

To examine this, consider first the decomposition of
squared error of the ensemble X at a particular point
and time into bias and variability components (e.g.,
Brankovic et al. 1990):

X — V)2 = (>_(f - V)2 + (X — )_(f)z' 9

Here the subscript f represents an individual ensem-
ble member forecast, the overbar represents an average
over all ensemble members, and V is the verification.
The first term on the right-hand side is the square of
the bias of the ensemble, representing how far the en-
semble mean is from the verification. The square root
of thisterm will hereafter be called the ** absolute bias.”
The second terms represents the spread, or variability
of the ensemble; its square root will be denoted as the
““ensemble variability.” Generally, if indeed the veri-
fication can be considered a member of the ensemble,
as is assumed with a perfect ensemble, then when the

TaBLE 5. Brier skill scores for MOS and four ensemble methodologies for various thresholds and forecast intervals. The asterisk

indicates highest Brier skill score for this threshold/forecast interval.

Time of Uncorrected Corrected Gamma on Gamma on

Threshold forecast MOS ensemble ensemble corrected ens. mean
0.01 in. 12-24 h 0.000* —0.199 —0.032 —0.042 —0.100
24-36 h 0.000* —0.340 -0.162 —0.153 0.167
36-48 h 0.000* —0.252 —-0.104 -0.101 —0.078
0.10 in. 12-24 h 0.000 —0.115 0.024 0.035* 0.013
24-36 h 0.000 -0.174 0.014 0.014 0.020*
36-48 h 0.000 —0.193 0.018 0.013 0.025*
0.25in. 12-24 h 0.000 —0.086 0.029 0.045* 0.034
24-36 h 0.000 —0.051 0.075 0.082 0.086*
36-48 h 0.000 -0.197 0.008 0.010* 0.010*
0.50 in. 12-24 h 0.000 —0.166 0.009 0.017 0.025*
24-36 h 0.000 -0.118 0.043 0.065 0.104*
36-48 h 0.000 —0.049 0.071* 0.068 0.063
1.00 in. 12-24 h 0.000 0.009 0.012 0.033 0.034*
24-36 h 0.000 0.021 0.066 0.055 0.079*
36-48 h 0.000 0.002 0.040 0.054* 0.033
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Absolute Bias v. Ensemble Variability for
synthetic normally distributed data
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FiG. 7. Scatterplot of synthetic ensemble dataset’s absolute bias vs
ensemble variability.

ensembleis more dispersed and the ensemblevariability
is larger, then the expected value of the absolute bias
should be larger as well. To illustrate this, a synthetic
group of normally distributed data was created. A total
of 10 sets of random normal data were created for each
variance between 10 and 50 in increments of 1, yielding
atotal of 410 sets. For each individual set, 16 random,
normally distributed samples were created. One sample
was arbitrarily denoted the verification V, and the re-
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maining 15 were denoted the ensemble. From this, an
absolute bias and ensemble variability was calculated
and plotted in Fig. 7. As shown, though there is much
scatter, as the ensemble variability increases, thereis a
tendency for the absolute biasto increase aswell. Hence,
areal ensemble ought to show some ability to forecast
itsforecast skill based on the ensemble variability. How-
ever, in evaluating the ability to forecast the forecast
skill, the variability of high-precipitation events should
not be compared to variability of low-precipitation
events. If done thisway, the ** spread—skill’’ relationship
is contaminated by the ensemble mean, since low-pre-
cipitation events usualy have lower variability than
high-precipitation events. A more meaningful analysis
must distinguish the ability for two forecasts with the
same ensemble mean but differing ensemble variabili-
ties to differently forecast the forecast skill.

To examine whether the ensemble can forecast the
forecast skill in the same manner that would be expected
of a perfect-model ensemble, we constructed such a
perfect-model ensemblefor comparison (seealso Buizza
1997). As shown in HC97, the error characteristics of
each individual member’s precipitation forecasts were
very similar. Hence, for the perfect-model ensemble, a
new synthetic verification was constructed at each sam-
ple point by randomly using one of the 15 forecasts,
leaving 14 remaining forecasts in the ensemble. Statis-
tics such as ensemble mean and variability were cal-
culated from the remaining 14 members. For the real
ensemble, the verification data was obtained from pre-
cipitation analyses derived from the River Forecast Cen-
ter precipitation database asin HC97, and the sampling
locations for the ensemble were also done as in HC97.

Scatterplots of the ensemble variability plotted as a
function of the ensemble mean are shown in Figs. 8a
and 8b for both the real and perfect-model data. As
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Fic. 8. Scatterplots of 24-h precipitation forecast ensemble variability as a function of the ensemble mean for (a)
real ensemble data and (b) perfect-model ensemble.
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Transformed Ensemble Variobility

Fic. 9. Scatterplots of power-transformed ensemble variability as a function of the transformed ensemble mean: (a) real
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shown, the data is highly nonnormally distributed, so
both the ordinate and abscissa were power transformed
asin (8) and replotted in Figs. 9a and 9b. Each dataset
was also divided into two halves, one with above av-
erage ensemble variability for a given ensemble mean,
and the other with below average variability. The di-
viding line for the two is overplotted in Fig. 9; this
nonparametric regression line was generated with arun-
ning line smoother with a neighborhood of 2.0 and a
Gaussian kernel with a standard deviation of 0.2.

Figures 10a—d plot rank histogramsfor low- and high-
variability subsets of both real and perfect-model data.
For thereal datain Figs. 10aand 10b, the extreme ranks
are much more highly populated for the low variability
subset, indicating that when the ensemble variability is
lower than average, then the ensemble is typically un-
derdispersive to a greater extent than for higher than
average ensemble variability. Conversely, for the per-
fect-model data in Figs. 10c and 10d, the histograms
arerelatively uniform both for above and below average
subsets.

We now attempt to quantify whether the real ensemble
data shows a statistically significant ability to forecast
the forecast skill. Plots of the absolute bias as afunction
of the ensemble mean [after power transformations to
each using (8) are plotted in Figs. 11a and 11b]. For
the perfect-model data, the subset with above average
ensemble variability appears to have higher absolute
bias than the subset with below average ensemble vari-
ability. However, there appears to be much more overlap
in the distributions with the real data in Fig. 11a. To
assess the statistical significance of this difference, a
regression equation was fit to the data of the form

AB, = b, + b, X" + b,l. (10)

Here AB, is the predicted transformed absolute bias, X’
is the transformed ensemble mean, and | is an indicator
variable (I = 1 for above average X', | = 0 for below
average). Use of a regression equation with this form
permits one regression equation to describe the entire
dataset. The most important coefficient from the re-
gression is b,, which measures the magnitude of the
discrimination of absolute bias between the high- and
low-variability subsets. The regression lines for | = 0
and | = 1 are overplotted in Fig. 11. After regression,
the coefficient b, is equal to 0.729 for the perfect-model
data and 0.134 for the real data. To quantify the statis-
tical significance of the magnitude of b,, a resampling
permutation test (Wilks 1995) was performed. The re-
gression analysis was redone, and the magnitude of b,
noted. This was repeated atotal of 1000 times, yielding
a sampling distribution of b, that would be expected
under the null hypothesis of no difference in absolute
bias between subsets. For the perfect-model data, the
original b, was higher than all 1000 resampled b,’s,
indicating a statistically significant ability to discrimi-
nate between higher and lower than average error. For
the real data, however, 230 of the 1000 resampled b,’'s
were higher than the original b,, indicating that there
is little evidence to conclude the real ensemble data can
““forecast the forecast skill,” even crudely. Apparently,
the ensembl e does not adequately discriminate between
above and below average variability subsets.

5. Conclusions

This paper tested the skill of various probabilistic
precipitation forecasts generated from a prototype short-
range ensemble against the current operational standard,
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MOS. Corrected ensemble forecasts and gamma distri-
butionsfit to these forecasts were competitivewith MOS
forecasts, and even dlightly outperformed MOS for
thresholds higher than 0.01 in. This result was based on
13 case days over primarily the fall and winter seasons,
so the apparent positive benefit of the ensemble must
be regarded as preliminary until tested with a larger
number of case days over all seasons. Nonetheless, this
ensemble was competitive with MOS despite a small
training sample, indicating that it may be possible to
generate probabilistic forecasts from ensembles that are
as skillful as MOS yet do not require a long training
dataset. This would permit more rapid implementation
of model improvements, sincetheforecast systemwould
not have to be frozen for many years so the forecasts
behave similarly to the training data.

Interestingly, though the probabilistic precipitation
forecasts were competitive with MOS, the important
information content can be extracted by judiciously us-
ing the ensemble mean. The presumed ability of the
ensemble to accurately forecast the precipitation fore-
cast skill using the dispersion of the ensemble could not
be demonstrated. Thiswas noted first in the similar skill
of probability forecasts generated from gamma distri-
butions whose specificity either varied or did not vary
with the spread of the ensemble. This was further dem-
onstrated through a comparison of the real ensemble
data and a perfect-model ensemble dataset, each divided
into subsets with above and below average variability.
Whereas the perfect-model data showed the ability to
discriminate between higher and lower than average pre-
cipitation forecast error, the real ensemble data showed
no such ability.

There are a number of interesting issues raised by
this research. First, though other authors (e.g., Molteni
et al. 1996) have shown some ability of medium-range
ensembles to forecast the midtropospheric forecast skill
on the large scale, users should not assume the skill of
surface weather effects at specific locations can also be
forecast from day to day until rigorous testing confirms
this. Second, since aforecast of the skill isoften desired,
research is needed into designing an ensemble forecast
system that will indeed be able to forecast the forecast
skill better, whether through a different perturbation
methodology, changes to the model physics, or changes
in the postprocessing strategy. Third, thereisinterestin
using the spread of short-range ensemble weather fore-
casts to find areas where adaptive observations would
produce the most improvement to the analysis and sub-
sequent forecast (e.g., Emanuel et al. 1996). Areas with
greater than normal spread would be preferentialy tar-
geted. The success of such a strategy is predicated on
the operational short-range ensemble forecast possess-
ing atemporally continuous spread—skill relationship at
specific points, not for the domain as a whole. We sug-
gest the methodology demonstrated here can be used to
test the extent to which such a spread—skill relationship
exists. The work here with precipitation forecasts sug-
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gests that the relationship may not be as strong as pre-
sumed.

Last, we suggest that ensemble model development
should include testing to determine an optimal ensemble
size and resolution. Coarser resolution forecastsare gen-
erally less accurate than finer-resolution forecasts, so an
increase in the size of the ensemble typically comes at
the expense of somewhat lessened accuracy of each
member forecast. The decrease in error through ensem-
ble averaging is largest when the ensemble sizeissmall;
increasing the size of the ensemble from 1 to 10 mem-
bers lowers the error substantially. Further increasing
from 10 to 100 members does little to improve the en-
semble mean, even if all are computed at the same res-
olution (Leith 1974; Du et al. 1997). This suggests if
the sizeisbased only on the accuracy of ensemble mean,
amoderately sized ensembleislikely toyield the lowest
error. If probabilistic assessments are important, addi-
tional forecast members may prove useful for assessing
the probabilities of rare events. However, the results
with the Eta Model experiments above suggest that this
particular model configuration was not able to forecast
precipitation forecast skill, and competitive probabilistic
forecasts could be generated strictly from the ensemble
mean. Hence, we suggest a positive spread—skill rela-
tionship and the usefulness of additional members
should first be demonstrated before increasing the en-
semble size beyond that which produces the lowest en-
semble mean error. We plan to explore this issue quan-
titatively in future research.
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APPENDIX

Sample Calculation of ““Corrected” Forecast
Probability Distribution Using an Ensemble and
Rank Histogram

Assume a sorted vector of ensemble forecasts X at a
given point and time, a corresponding rank histogram
R, and a verification V.

Probabilities are to be set for the MOS categories 0
=V <0.01in, 0.01 =V <0.10, 010 =V < 0.25,
025=V<0505=V<1010=V <20, and
20 = V.
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Assume the precipitation forecast (in inches) is as
follows:

X =Xy ooy Xis]
= [0, 0, 0, 0, 0, 0, 0.02, 0.04, 0.05, 0.07,

0.10, 0.11, 0.23, 0.26, 0.35].

First, calcul ate an ensemble mean and an ensemble vari-
ahility, the standard deviation of the ensemble about its
mean. Here, the ensemble mean is 0.082 in. and the
ensemble variability is 0.111 in. According to the cri-
teriafrom section 2, thisindicates* moderate’” ensemble
variability, and hence the rank histogram illustrated in
Fig. 2e is used. Assume thus that

R=[R, ..., Ryl
= [0.25, 0.13, 0.09, 0.07, 0.05, 0.05, 0.04, 0.04,

0.03, 0.03, 0.03, 0.02, 0.02, 0.03, 0.05, 0.07].

Work upward through the precipitation categories, start-
ing with the first category, p(0.0 = V < 0.01). There
are six precipitation forecasts of zero, and one forecast
of 0.02, above thefirst threshold of 0.01 in. Hence, using
(2) and (4), ranks 1-6 and a fraction of rank 7 are
summed. Hence, p(0.0 = V < 0.01) = 0.25 + 0.13 +
0.09 + 0.07 + 0.05 + 0.05 + 0.04[(0.01 — 0.00)/(0.02
— 0.00)] = 0.66.

The probability for the next category, p(0.01 = V <
0.10), isnow calculated. The ensemble membersof interest
in calculating this probability are X, to X,,. Hence, the
remaining part of rank 7 issummed with ranks8-11: using
(5) and (2), p(0.01 = V < 0.10) = 0.04{(0.02 — 0.01)/
(0.02 — 0.00)] + 0.04 + 0.03 + 0.03 + 0.03 = 0.15.

Similarly, p(0.10 = V < 0.25) is calculated using (2)
and (4). Ranks 12 and 13 are added to a fraction of rank
14: p(0.10 = V < 0.25) = 0.02 + 0.02 + 0.03[(0.25
— 0.23)/(0.26 — 0.23)] = 0.06.

The remaining precipitation forecasts are X,, and X5,
0.26 and 0.35 in., respectively. The largest remaining
issueis how to allocate the last rank’s probability among
the existing categories. Using the method of moments
(Wilks 1995), the estimated Gumbel parameters ¢ and
B are 0.030 and 0.0898, respectively. The cumulative
distribution functions for the Gumbel distribution
F(0.35in.) and F(0.50 in.) are 0.9721, and 0.9946, re-
spectively. Hence, using (2) and (6), p(0.35 = V < 0.50)
= 0.05 + 0.07(0.9946 — 0.9721)/(1.0 — 0.9721), which
is approximately 0.11.

Finally, (7) is used to calculate p(0.50 = V < 1.00);
F(1.0) = 0.99998. Hence, p(0.50 = V < 1.00) =
0.07(0.99998 — 0.9946)/(1.0 — 0.9721), which is ap-
proximately 0.01.

The probability above 1.0 in. and 2.0 in. isnegligible.
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